На правах рукописи

Bul

БИРЮКОВА АНАСТАСИЯ АЛЕКСАНДРОВНА

КЛИНИЧЕСКАЯ ЭФФЕКТИВНОСТЬ СИМВАСТАТИНА, ЕГО ВЛИЯНИЕ НА ЦИТОКИНОВЫЕ БИОМАРКЕРЫ У БОЛЬНЫХ НЕИНФЕКЦИОННЫМ УВЕИТОМ

14.03.09 - Клиническая иммунология, аллергология

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Научно-исследовательский институт фундаментальной и клинической иммунологии» (НИИФКИ).

Научный ј	руководитель:
-----------	---------------

доктор медицинских наук

Ширинский Иван Валерьевич

Официальные оппоненты:

Обухова Ольга Олеговна - доктор медицинских наук, научный сотрудник лаборатории иммунологии Федерального Государственного Бюджетного Научного Учреждения «Федеральный Исследовательский Центр Фундаментальной и Трансляционной Медицины»

Дроздова Елена Александровна - доктор медицинских наук, профессор кафедры глазных болезней Федерального государственного бюджетного учреждения высшего образования «Южно-Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Ведущая организация:

Федеральное	государственное	бюджетное	учреждение	науки	Институт
иммунологии и физи	ологии Уральского	отделения Рос	ссийской акаде	мии наук	

Защита состоится «		»		_2022 го	да в	u	асов на заседа	нии
диссертационного совета	Д	001.001.01	ПО	адресу:	630099,	Γ.	Новосибирск,	ул.
Ядринцевская, д. 14.								

С диссертацией можно ознакомиться в библиотеке НИИФКИ и на сайте http://niikim.ru/ru/диссовет/объявления-диссовета

Автореферат разослан	2022 г.
----------------------	---------

Ученый секретарь диссертационного совета, кандидат биологических наук

Облеухова Ирина Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Неинфекционный увеит, встречается у 0.03-0.7% населения и является в 25% случаев причиной полной потери зрения в общей популяции и 10% случаев слепоты у работоспособных людей (Smet et al. 2011). В структуре глазных болезней распространенность увеитов варьирует в пределах 7-30%, в 30-60% случаев увеиты принимают хроническое течение (Сенченко Н.Я., Щуко А.Г., Малышев В.В. 2010).

Аутоиммунный увеит (АИУ) – это гетерогенная группа заболеваний с недостаточно изученным патогенезом. Предполагается, что основой патогенеза АИУ является возникновение аутоиммунного ответа к некоторым антигенам, локализованным преимущественно внутри глаза. К числу потенциальных антигенов относят продукты распада меланоцитов или тирозиназо-родственных белков (Sugita et al. 2006; Damico et 2005), ретинальный аррестин (S-антиген), интерфоторецепторный ретиноидсвязывающий белок и родопсин (Agarwal et al. 2012). Появились данные, указывающие на то, что причиной генерации аутореактивных Т-лимфоцитов, вызывающих воспаление внтури глаза могут быть бактериальные антигены при дисбиозе кишечника. Предполагается, что в результате действия аутоантигенов происходит активация клеток врожденного и адаптивного иммунитета и развитие хронического воспаления сосудистой оболочки глаза (Smet et al. 2011). Небольшое число исследований, проведенных премущественно на моделях экспериментального увеита у животных, свидетельствуют о возможном участии в иммунопатогенезе болезни достаточно большого ансамбля клеток и их медиаторов: макрофагов, дендритных клеток, Th1 и Th17- лимфоцитов, CD4+CD25+FOXP3+Treg лимфоцитов, провоспалительных и антивоспалительных цитокинов, молекул клеточной адгезии, компонентов системы комплемента и др. (Molins et al. 2015; Willermain et al. 2012; Durukan et al. 2007). В то же время, предполагается, что некоторые увеиты могут быть отнесены к группе аутовоспалительных заболеваний. В пользу этого предположения свидетельствуют данные о повышенной частоте развития увеитов при моногенных аутовоспалительных заболеваниях, ассоциированных с дефектом генов и отсутствие в крови этих больных аутоантител или аутореактивных Тлимфоцитов (Forrester et al. 2018).

Увеит ассоциирован с рядом коморбидных заболеваний, в частности — с группой HLA-B27-зависимых болезней (серонегативные спондилоартриты, неспецифический язвенный колит, болезнь Бехчета, псориатический артрит) (Smet et al. 2011). В свою очередь показано, что у больных с анкилозирующим спондилитом наличие увеита связано с повышенной частотой развития атеросклероза и артериальной гипертензии (Berg et al. 2014)

Основой лечения увеита В реальной клинической практике являются глюкокортикостероиды $(\Gamma KC),$ применяемые локально системно, И противовоспалительные и иммуносупрессивные препараты (метотрексат, азатиоприн, микофенолат мофетил, циклофосфан) (Durrani et al. 2011). Использование этих групп лекарств сопряжено с развитием ряда побочных эффектов, из которых наиболее серьезными являются повышение риска развития инфекций и злокачественных опухолей (Bernatsky et al. 2007; Bugelski et al. 2010). В последние годы появились сообщения о применении у больных увеитами различных биологических препаратов - IFN-β, моноклональные антитела против TNF-α, IL-6, IL-17A. Однако недостаточная эффективность и/или высокий риск побочных эффектов, высокая стоимость современных

препаратов для лечения увеита ограничивает применение этих средств и обусловливают необходимость поиска новых видов лечения.

Важным фактором для разработки оптимальной стратегии лечения увеита является информативных биомаркеров, позволяющих выявлять субклиническим течением увеита, предсказывать ответ на терапию и оценивать выраженность воспаления в передней камере глаза. Показано, что некоторые цитокины водянистой влаги могут быть биомаркерами при увеите. Однако определение содержания цитокинов водянистой влаги технически затруднено, забор образцов приводит к значительному дискомфорту у пациентов. В связи с этим предпринимаются попытки определения биомаркеров в слезной жидкости, получение образцов которой не представляет трудности. В частности показано, что цитокины слезной жидкости могут быть малоинвазивными биомаркерами при некоторых заболеваниях глаз – синдроме сухого глаза (Wei et al. 2013), глаукоме (Gupta et al. 2017), а также при некоторых системных болезнях – рассеяном склерозе (Calais et al. 2010). Информативность определения цитокинов в слезе как биомаркеров при неинфекционном увеите изучена

Ингибиторы 3-гидрокси 3-метилглутурил коэнзим А редуктазы (статины) широко используются ДЛЯ лечения гиперхолестеринемии атеросклероза. действия, статины обладают противовоспалительным липидснижающего иммуномодулирующим эффектами, не повышая при этом риск развития злокачественных новообразований и инфекций (van den Hoek, Hester L et al. 2011; Heart Protection Study Collaborative, Group 2011). Эти данные послужили основанием для успешного использования статинов при некоторых аутоиммунных заболеваниях – ревматоидном артрите, псориазе и рассеяном склерозе (McCarey et al. 2004; Vollmer et al. 2004; Ширинский И.В., Козлов В.А., Ширинский В.С.).

Уменьшение воспаления сосудистой оболочки глаза при использовании статинов было продемонстрировано на моделях экспериментального аутоиммунного увеита и ретинита у мышей. Эффективность, безопасность и иммуномодулирующие эффекты статинов при увеите у людей не изучалась.

Таким образом, распространенность хронического увеита и значительное число его неблагоприятных исходов, недостаточная эффективность и безопасность терапии неинфекционного увеита, данные о противоспалительных и иммуномодулирующих свойствах статинов, отсутствие малоинвазивных информативных биомаркеров неинфекционного увеита, определили цель и задачи исследования.

Цель исследования

Оценка эффективности и безопасности применения симвастатина при неинфекционном увеите и изучение возможности использования цитокинов слезной жидкости и сыворотки крови как биомаркеров увеита

Задачи исследования

- 1. Изучить эффективность и безопасность включения симвастатина в стандартную терапию больных неинфекционным увеитом
- 2. Оценить содержание ряда провоспалительных и противовоспалительных цитокинов в слезной жидкости здоровых людей и пациентов с увеитом.
- 3. Изучить связь демографических и клинических показателей больных увеитом с содержанием цитокинов слезной жидкости и сыворотки периферической крови.

- 4. Оценить влияние терапии неинфекционного увеита на уровень провоспалительных и противовоспалительных цитокинов в слезной жидкости и в сыворотке ПК.
- 5. Изучить информативность определения цитокинов слезы и сыворотки как предикторов ответа на терапию увеита.

Научная новизна

Впервые в рандомизированном, контролируемом клиническом исследовании установлено, что дополнительное назначение симвастатина к стандартному лечению больных неинфекционным увеитом приводит к повышению частоты ответа на лечение до 96% случаев к концу 8 недели, против 44% у больных, получавших лечение только ГКС, снижению активности проявлений заболевания и улучшению остроты зрения. Впервые установлено, что добавление симвастатина способствует более быстрому наступлению клинического эффекта, начало которого регистрируется уже на четвертой неделе лечения у 92% пациентов, а в контрольной группе у 16% больных. Впервые показано, что комбинированная терапия увеита с применением симвастатина оказывает стероидсберегающий эффект. Впервые выявлено, что у больных неинфекционным увеитом содержание IL-6 и IL-8 в слезной жидкости независимо ассоциировано с продолжительностью болезни и не связано с активностью воспаления. Впервые показано, что терапия увеита не влияет на уровень IL-6, IL-10 в слезе и IL-6, IL-18, TNFα в сыворотке периферической крови.

Теоретическая и практическая значимость.

Результаты исследования расширяют наши представления об ингибиторах ГМГ-КоА-редуктазы (статинах), которые помимо липидснижающего действия, при лечении неинфекционного увеита демонстрируют противовоспалительные свойства. Данные, полученные в работе, обосновывают положение о том, что изучаемые цитокины в слезе и сыворотке крови нельзя отнести к биомаркерам воспаления и ответа на лечение, поскольку связь цитокинов с основными клиническими характеристиками внутриглазного воспаления и ответом на терапию не установлена. В то же время, IL-8 и IL-10 могут быть биомаркерами продолжительности болезни.

Практическое значение работы заключается в том, что ее результаты обосновывают принципиально новую стратегию лечения аутоиммунных увеитов, основанную на использовании статинов в сочетанной терапии, которая более чем в два раза увеличивает эффективность монотерапии ГКС, значительно ускоряет начало терапевтического действия, обладает стероид-сберегающим эффектом, снижая риск развития нежелательных явлений приема ГКС.

Основные положения, выносимые на защиту

- 1. Использование симвастатина в сочетании с применением ГКС у больных неинфекционным увеитом значительно повышает эффективность лечения, ускоряет начало проявления эффекта.
- 2. При неинфекционном увеите содержание ряда провоспалительных и противовоспалительных цитокинов в слезе и сыворотке ПК не связано с выраженностью воспаления и не предсказывает ответ на лечение.

Степень достоверности, апробация результатов и личное участие автора

Достоверность полученных результатов подтверждается логично выстроенным алгоритмом работы, достаточной выборкой исследования, использованием современных иммунологических методов и адекватных методов статистической обработки. Основные положения работы доложены и обсуждены на международных и российских конгрессах. Автор участвовал в разработке дизайна исследования, критериев включения и исключения, формировании и заполнении регистрационных карт, анализе медицинской документации. Материалы работы были представлены на Конгрессе Европейской Противоревматической Лиги (European League Against Rheumatism, EULAR) в 2015 году (Рим, Италия, постер-презентация), IV Объединенном иммунологическом форуме в 2019 году (Новосибирск, Россия), Втором Глобальном Офтальмологическом Саммите (2nd Global Ophthalmology Summit), Амстердам, Нидерланды в 2019 году, а также на "XXII международной медико-биологической научной конференции молодых исследователей "Фундаментальная наука и клиническая медицина. Человек и его здоровье" (Санкт-Петербург) в 2019 году.

Публикации

По материалам исследования опубликовано 6 научных работ, в том числе 3 статьи в рецензируемых периодических изданиях, определяемых в соответствии с рекомендацией ВАК.

Структура и объем диссертации

Диссертация изложена на 141 страницах машинописного текста. Состоит из введения, обзора литературы, главы «Материалы и методы исследования», результатов собственных исследований, отраженных в четырех главах, заключения, выводов и списка литературы. Диссертация иллюстрирована 3 рисунками и 39 таблицами. Список литературы содержит 240 источников.

Рисунок 1. Общая схема исследования

Дизайн исследования

Открытое, сравнительное проспективное рандомизированное исследование, проводилось в одном центре (ГБУЗ НСО ГКБ№1). На рисунке 1 представлена общая схема исследования. Пациенты с увеитом были рандомизированы к приему симвастатина 40 мг/сут в течение 8 недель в сочетании со стандартной терапией увеита (локальные и системные ГКС) или к получению только стандартной терапии. Рандомизированное исследование состояло из двух частей. Основная часть, в которой оценивались непрерывные параметры эффективности, частота ответа на лечение и уровень цитокинов слезной жидкости. Субисследование цитокинов сыворотки крови. В субисследовании проводилась оценка непрерывных параметров эффективности и содержания цитокинов сыворотки. В исследование включались мужчины и женщины 18-80 лет с диагнозом активного неинфекционного увеита, поставленным офтальмологом. Всем пациентам основного исследования до начала лечения и на 2, 4 и 8 неделях терапии проводили комплексное клинико-функциональное обследование, включающее: визометрию без коррекции коррекцией, офтальмометрию, периметрию, тонометрию, офтальмоскопию. Регистрация клинических биомикроскопию, параметров субисследовании проводилась только до начала лечения и на 8 неделе терапии. Клеточность влаги передней камеры и помутнение влаги передней камеры были оценены с использованием стандартизированной номенклатуры увеитов (SUN).

Образцы слезы

Образцы слезы получали с помощью полоски Ширмера, помещая ее за край нижнего века. Чтобы извлечения слезы из полосок, использовали метод, описанный VanDerMeid et al. в 2011. Для определения нескольких цитокинов в образцах слезы, мы использовали метод обнаружения нескольких антигенов, разработанный Wakefield et al. В этом методе разведенную слезу объемом 110 мкл помещают на планшет для ELISA с захватом антигена, где будет связываться специфический антиген из образца, в то время как другие цитокины/хемокины будут оставаться в растворе. После инкубации образцы

 $(105 \ \mathrm{Mkn})$ извлекаются из планшета для ELISA и помещаются на следующий планшет для ELISA с захватом антигена, предполагая, что приблизительно 5 мкл объема образца будут потеряны во время переноса. Анализы ELISA проводили с использованием коммерческих наборов ELISA (IL-6, IL-8, IL-10 и IFN- γ ELISA-Best, Вектор-Бест, Россия). На основании инструкций производителя пределы обнаружения для IL-6, IL-8, IL-10, TNF α и IFN- γ составляли 0,5 пг/мл, 2 пг/мл, 2,5 пг/мл, 2 пг/мл и 5 пг/мл соответственно. Концентрации ниже этих порогов считались не обнаруживаемыми.

Сывороточные цитокины

Для изучения влияния приема симвастатина на содержание сывороточных цитокинов у больных, принимавших участие в исследовании, дополнительно забирали 5 мл венозной крови. Содержание IL-1, IL-6, IL-10, IL-18 и TNF- α в сыворотках оценивалось с помощью стандартных наборов (IL-1, IL-6, IL-10, IL-18 и TNF- α ELISA-Best, Вектор-Бест, Россия) в соответствии с инструкциями производителя. Нижние пороги определения концентраций IL-1, IL-6, IL-10, IL-18 и TNF- α были 1 пг/мл, 0,5 пг/мл, 2,5 пг/мл, 0,5 пг/мл, соответственно.

Носительство HLA-B27 антигена

Определение HLA-B27 антигена проводилось в лаборатории INVITRO г. Новосибирска методом полимеразной цепной реакции в режиме реального времени.

Статистический анализ

Непрерывные базовые характеристики представлены в виде средней \pm стандартное отклонение. Базовые различия между изучаемыми группами оценивались с помощью t-критерия Стьюдента для непрерывных характеристик и критерия χ^2 для дихотомических параметров. Различия в частоте кортикостероид-сберегающего контроля за глазным воспалением были оценены с использованием критерия χ^2 . При проведении регрессионного анализа клинические показатели воспаления глаза и остроты зрения анализировались как непрерывные данные. Для лонгитудинального анализа использовался метод генерализованных оценивающих уравнений (generalized estimating equations, GEE).

Для оценки различий в уровнях цитокинов у пациентов по сравнению с контрольной группой проводились t-тест, затем — тобит-регрессия и тобит-регрессия с коррекцией по возрасту и полу. Для оценки факторов, связанных с концентрацией цитокинов в слезе, использовались модели множественной регрессии Тобита, учитывающие наличие данных, цензурированных слева.

Изменения до и после лечения оценивались с использованием парного критерия Стьюдента. Корреляции между изменениями в цитокинах слезы и изменениями в клинических параметрах оценивали с использованием корреляционного теста Спирмена. Различия в исходных концентрациях цитокинов слезы между ответившими и неответившими на лечение были оценены с использованием t-критерия Стьюдента. Для коррекции анализа по цензурированным данным содержания цитокинов и по демографическим показателям сравниваемых групп также использовалась тобитрегрессия. Анализ чувствительности заключался в стратификации пациентов по HLA-В27-статусу. Для изучения возможности предсказания ответа на терапию с помощью определения содержания цитокинов слезной жидкости использовался ROC-анализ.

Основное исследование, клиническая часть

В основном исследовании было рандомизировано 50 пациентов (по 25 в сравниваемых группах) и в субисследовании сывороточных цитокинов — 30 больных (по 15 в сравниваемых группах). В таблице 1 представлены демографические и клинические характеристики больных сравниваемых групп до начала терапии. Как видно из таблицы, в группе симвастатина было достоверно больше пациентов с HLA-B27-ассоциированным увеитом и анкилозирующим спондилитом.

Таблица 1. Исходные характеристики пациентов сравниваемых групп.

таблица 1. Исходиме хар	•	иентов сравниваемых групп	l•
	Стандартная	Симвастатин+стандартная	
	терапия	терапия	P
	N=25	N=25	
Возраст, лет	44.28 (16.22)	43.68 (13.78)	0.89
Пол			
• Мужчины	12(48)	16(64)	0.26
• Женщины	13(52)	9(36)	
Длительность заболевания, лет	4.28 (2.26)	3.52 ±2.06	0.22
Двусторонний увеит	3(12)	0.0	0.47
Локализация процесса			
Передний увеит	23(92)	22(88)	1.0
Промежуточный увеит	1(4)	1(4)	1.0
Задний увеит или панувеит	1(4)	2(8)	
HLA B27	7(28)	17(68)	0.01
Основное заболевание			
• Отсутствует	13 (52)	5 (20)	
· Анкилозирующий	6 (24)	17 (68)	
спондилит			
· Болезнь Бехчета	1 (4)	0 (0)	<0.01
 Ювенильный 	4 (16)	0 (0)	
идиопатический артрит	4 (16)	0 (0)	
 Псориатический артрит 	1 (4)	0 (0)	
 Болезнь Рейтера 	0 (0)	3 (12)	
Острота зрения, logMAR	0.93(0.8)	1.25 (0.9)	0.19
ВГД, мм рт ст	17.96(0.73)	17.68(0.59)	0.57
Изменение полей зрения	10(40)	3(12)	0.03
Клеточность влаги			
0+	0	1(4)	
0,5+	1(4)	0	0.66
1+	8(32)	5(20)	0.66
2+	8(32)	9(36)	
3+ и более	8(32)	10(40)	
Помутнение влаги передней			
камеры			
0+	1(4)	1(4)	0.99
1+	1(4)	1(4)	
2+	10(40)	5(20)	

3+ и более	13(52)	18(72)	
Задние синехии	24(96)	24(96)	0.98
Помутнения хрусталика	1(4)	0.0	0.81
Выпот в стекловидном теле			
0+	5(20)	8(32)	0.74
1+	16(72)	12(48)	0.74
2+ и более	4(8)	5(20)	
Вовлеченность сетчатки и	1(4)	2(8)	0.57
хориоидеи	1(4)	2(8)	0.57

В таблице представлены средние значения (SD) для непрерывных показателей, n (%) для категориальных показателей.

Потребность в приеме различных форм ГКС является одним из наиболее валидных исходов терапии аутоиммунных заболеваний, далее представлен анализ влияния добавления симвастатина на потребность в назначении ГКС-содержащих глазных капель, субконъюнктивальные инъекции ГКС и системной терапии ГКС. Необходимо отметить, что в начале терапии сравниваемые группы пациентов не отличались по проводиму лечению ГКС.

Таблица № 2. Сравнение использования стандартного лечения увеита в

группе симвастататина и группе контроля.

i pynnic chwibaciait	группе симбастатина и группе контроля.							
	Симвастатин+стандартная	Стандартная						
Терапия	терапия	терапия	Значение Р					
_	N=25	N=25						
Глазные капли с Г	КС							
Неделя 0	4.8 (1.15)	4.8 (1.15)	1					
Неделя 2	3.84 (0.8)	4 (0)	0.32					
Неделя 4	1.44 (1.23)	2.48 (0.87)	0.0012					
Неделя 8	0.28 (0.61)	1.28 (0.68)	<0.001					
Субконъюнктивал	ьные инъекции ГКС							
Неделя 0	3.84 (0.8)	4 (0)	0.32					
Неделя 2	0.56 (1.23)	2.72 (1.28)	<0.001					
Неделя 4	0.16 (0.55)	0.32 (0.75)	0.39					
Неделя 8	0 (0)	0 (0)	_					
Системные ГКС								
Неделя 0	27.8 (4)	27.8 (4)	1					
Неделя 2	7.56 (12.37)	21.6 (11.02)	<0.001					
Неделя 4	0.2 (1)	0.4(2)	0.66					
Неделя 8	0 (0)	0.4(2)	0.32					

Значения даны как среднее и стандартное отклонение среднего (SD), в виде суточного количества капель, назначаемого при каждом посещении.

На четвертой неделе лечения больные группы симвастатина получали достоверно более низкую (почти в два раза) дозу капель ГКС (таблица 2). К концу терапии доза капель с ГКС у больных, получающих симвастатин была в четыре раза ниже.

В группе симвастатина доза инъекционных ГКС была достоверно ниже в четыре раза на 2 неделе терапии, на 4 недели обе группы получали сопоставимые дозировки

инъекционных ГКС, а на 8 неделе пациентам обеих групп такая терапия уже не требовалась.

На второй неделе лечения доза системных ГКС у больных, получавших симвастатин, была достоверно ниже почти в 3 раза. С 4 недели обе группы получали сопоставимые дозировки системных ГКС.

Таким образом, данные исследования свидетельствуют о значительном снижении потребности в приеме различных форм ГКС у больных, принимавших симвастатин.

Далее изучалось влияние симвастатина на композитную конечною точку – клинический ответ на терапию, учитывающий потребность в ГКС.

Ответ на терапию достоверно чаще развивался в группе симвастатина, начиная с 4-й недели лечения и заканчивая последующим наблюдением на 8-й неделе (таблица 3).

Таблица 3. Частота развития стероид-сберегающего ответа на терапию в сравниваемых группах.

	Неделя 2			пя 2 Неделя 4			Неделя 8		
	группа симваст. +стандарт. терапия	группа стандартной терапии	P	группа симваст. + стандарт. терапия	группа стандартной терапии	Р	группа симваст. + стандарт ная терапия	грушта стандартной терапии	P
Ответившие на лечение	0 (0)	0 (0)	1	23 (92)	4 (16)	-0 001	24 (96)	11 (44)	<0,001
Не ответившие на лечение	25 (100)	25 (100)	1	2 (8)	21 (84)	<0,001	1 (4)	14 (56)	<0,001

В графах указаны абсолютные и относительные (%) значения ответивших на лечение больных

На 4-й неделе наблюдения эффект был зарегистрирован у 92% больных опытной группы и у 16% контрольной. В конце наблюдения частота эффекта в опытной группе увеличилась до 96%, в контрольной она была более чем в 2 раза меньше – 44%.

Таким образом, дополнительный прием симвастатина больными неспецифическим увеитом ассоциирован с выраженным уменьшением потребности в ГКС и повышением частоты стероид-сберегающего ответа на терапию.

В отличие от других органов, выраженность воспаления в глазу может быть неинвазивно оценена в клинике с помощью оценки количества клеток во влаге передней камеры и степени помутнения влаги передней камеры. В следующем подразделе нашей работы мы оценивали влияние симвастатина на эти параметры воспаления.

Таблица №4. Влияние симвастатина на показатели глазного воспаления, остроту зрения и внутриглазное давление.

	Неделя	2	Неделя	ı 4	Неделя 8	
	β- коэффициент [ДИ 95%]	Значение <i>Р</i>	β- коэффициент [ДИ 95%]	Значение <i>Р</i>	β- коэффициент [ДИ 95%]	Значение <i>Р</i>
Остроты зрения вдаль, logMAR	-0.72 [-1.12; -0.32]	<0.001	-0.78 [-1.19; -0,37]	<0.001	-0.52 [-0.91; -0.13]	<0.001
ВГД, мм рт ст	-0.22 [-1.90; 1.46]	0.8	-0.1 [-1.81; 1.6]	0.9	-0.36 [-2.07; 1.35]	0.68

Клеточность						
влаги	-0.69		-0.71		-0.47	
передней	[-1.17; -0.21]	0.005	[-1.22; -0.19]	0.007	[-0.95; 0.02]	0.058
камеры,	[1.17, 0.21]		[1.22, 0.17]		[0.55, 0.02]	
степень						
Помутнения						
влаги	-1.67		-1.00		-0.78	
передней	[-2.11; -1.23]	< 0.001	[-1.48; -0.52]	< 0.001	[-1.23; -0.33]	0.001
камеры,	[2.11, 1.23]		[1.40, 0.32]		[1.23, 0.33]	
степень						
Помутнения	-0.18		-0.11		0.07	
стекловидного	[-0.55; 0.20]	0.36	[-0.51; 0.29]	0.58	[-0.36;0.49]	0.756
тела, степень	[0.55, 0.20]		[0.51, 0.29]		[0.30,0.49]	

На протяжении наблюдения степень клеточность влаги передней камеры уменьшилась во всех исследуемых группах по сравнению со значениями до лечения. Начиная со 2-й недели лечения и заканчивая последующим наблюдением на 4-й неделе, в группе симвастатина выявлялось достоверно более выраженное уменьшение клеточности (таблица 4). На 8-ой неделе терапии различий между сравниваемыми группами не было. За весь период наблюдения степень помутнения влаги передней камеры уменьшилась в исследуемых группах по сравнению со значениями до лечения. В группе симвастатина регистрировалось более выраженное уменьшение выраженности помутнения влаги передней камеры начиная со 2-й недели лечения и заканчивая последующим наблюдением на 8-й неделе. В группе со стандартной терапией данный критерий активности увеита тоже уменьшился, но только к 8 неделе наблюдения. Между группами выявлено достоверное различие начиная со 2 недели терапии.

Важными исходами увеита является острота зрения и внутриглазное давление.

У пациентов, принимавших симвастатин, выявлялось статистически значимое улучшение остроты зрения, начиная со второй недели лечения до окончания наблюдения (таблица 4).

На протяжении всего периода наблюдения статистически значимых различий в величине внутриглазного давления в группах сравнения выявлено не было.

Таким образом, добавление симвастатина к стандартной терапии неинфекционного увеита было ассоциировано с улучшением ряда клинических и инструментальных выявляемые на визите рандомизации различия показателей. Однако сравниваемыми группами в 2.4 раза по частоте носительства HLA-B27 и сопутствующего анкилозирующего спондилита могли повлиять на полученные результаты. Т.к. HLA-B27ассоциированный увеит характеризуется лучшим прогнозом, причиной более частого ответа на лечение в группе симвастатина могло быть то, что в этой группе больше пациентов были носителями HLA-B27. Для исключения такой возможности мы провели раздельный (стратифицированный) анализ эффективности симвастатина в подгруппах (+)(анклозирующий спондилит) и HLA(-)(отсутствие анкилозирующего спондилита) больных. При сохранении эффектов симвастатина в обоих подгруппах больных можно сделать вывод об отсутствии влияния HLA-B27-статуса или наличия сопутствующего анкилозирующего спондилита на полученные результаты.

Базовые характеристики больных, стратифицированных по HLA-B27

До начала исследования у HLA-B27-позитивных пациентов, принимавших симвастатин, ВГД было снижено, а у HLA-B27-негативных больных, принимавших симвастатин, ВГД, напротив, было достоверно выше. Других различий между группами не было.

Следующие разделы работы будут посвящены влиянию приема симвастатина на потребность в ГКС у HLA-B27(+) и HLA-B27(-) пациентов.

Таблица №5. Сравнение использования стандартного лечения увеита в группе симвастататина и группе контроля у пациентов стратифицированных по HLA-B27

статусу.

статусу.			
	Стандартная	Симвастатин+стандартная	
Терапия	терапия	терапия	Значение Р
	N=7	N=17	
HLA-B27 позитивн	ые пациенты		
Глазные капли с ГК	CC		
Неделя 0	4.57 (0.98)	4.59 (0.18)	0.98
Неделя 2	4 (0)	3.764 (0.97)	0.53
Неделя 4	2.29 (0.76)	1.18 (1.01)	0.0016
Неделя 8	1 (0.58)	0.12 (0.33)	<0.001
Субконъюнктиваль	ные инъекции ГКС	1	
Неделя 0	4 (0)	3.76 (0.97)	0.53
Неделя 2	2 (1.15)	0.24 (0.66)	<0.001
Неделя 4	0 (0)	0 (0)	_
Неделя 8	0 (0)	0 (0)	_
Системные ГКС		,	
Неделя 0	27 (0)	27 (0)	_
Неделя 2	19.29 (13.17)	4.76 (10.61)	0.009
Неделя 4	0 (0)	0 (0)	_
Неделя 8	0 (0)	0 (0)	_
HLA-B27 негативн	ые пациенты		
Глазные капли с ГК	C		
Неделя 0	4.89 (1.23)	5.25 (1.04)	0.48
Неделя 2	4 (0)	4 (0)	_
Неделя 4	2.56 (0.92)	2 (1.51)	0.26
Неделя 8	1.39 (0.7)	0.62 (0.92)	0.028
Субконъюнктиваль	ные инъекции ГКС		
Неделя 0	4 (0)	4 (0)	_
Неделя 2	3 (1.24)	1.25 (1.83)	0.0085
Неделя 4	0.44 (0.86)	0.5 (0.93)	0.88
Неделя 8	0 (0)	0 (0)	_
Системные ГКС			
Неделя 0	28.11 (4.71)	29.5 (7.07)	0.56
Неделя 2	22.5 (10.35)	13.5 (14.43)	0.083
Неделя 4	0.56 (2.36)	0.62 (1.77)	0.94
Неделя 8	0.56 (2.36)	0 (0)	_

Значения даны как среднее и стандартное отклонение (SD), в виде суточного эквивалента преднизолона, назначаемого пациентам каждый визит.

* тире (–) указывает на то, что значение P не может быть рассчитано из-за отсутствия вариации

Сравнительный анализ применения глазных капель с ГКС

Доза местных ГКС в виде глазных капель у пациентов сравниваемых групп достоверно не отличалась до 2 недели наблюдения. На 4 и 8 неделях HLA-B27 позитивные пациенты группы симвастатина получали достоверно меньше стероидных инстилляций (таблица 5). У HLA-B27-негативных пациентов обоих групп не было достоверных различий в дозировке капель с ГКС на 2 и 4 неделях наблюдения. На 8 неделе наблюдения HLA-B27 негативные пациенты группы симвастатина получили достоверно меньше инстилляций ГКС.

Сравнительный анализ применения субконьюнктивальных ГКС

НСА-В27 позитивные пациенты обеих групп получали одинаковое количество местных ГКС в виде субконъюнктивальных инъекций с начала наблюдения и до 2 недели (таблица 5). На 2 неделе пациенты группы симвастатина получали достоверно меньше инъекций с ГКС. А с 4 недели и до конца наблюдения обе группы пациентов не нуждались в инъекционных ГКС. НСА-В27 негативные пациенты обеих групп получали одинаковое количество местных ГКС в виде субконъюнктивальных инъекций до включение в исследование. На 2 неделе НСА-В27 негативные пациенты группы симвастатина получили достоверно меньше инъекций. На 4 неделе пациентам обеих групп проведены инъекции сопоставимого количества инъекционных ГКС. На 8 наблюдения обе группы пациентов не нуждались введении ГКС под конъюнктиву.

Сравнительный анализ применения системных ГКС

Системные ГКС HLA-B27-позитивные пациенты обеих групп принимали только с начала терапии и до 4 недели наблюдения (таблица 5). Пациенты обеих групп получали одинаковую дозу системных ГКС в начале терапии, однако на 2 неделе пациенты группы симвастатина принимали достоверно меньшую дозу. Между дозами принимаемых системно ГКС у HLA-B27 негативных пациентов двух групп на всем периоде наблюдения достоверной разницы выявлено не было.

Далее нами был проведен стратифицированный по HLA-B27 статусу анализ влияния включения симвастатина в лечение на различные параметры воспаления внутри глаза, ВГД и остроту зрения.

Влияние сочетанной терапии на показатели глазного воспаления, остроту зрения и внутриглазное давление у HLA-B27 (+) и HLA-B27 (-) больных.

Таблица №6. Влияние симвастатина на показатели глазного воспаления, остроту зрения и внутриглазное давление у пациентов стратифицированных по

HLA-B27 статусу.

IILA-D2/ Clary	неделя Неделя	1 2	Неделя	<u> </u>	Неделя 8	
	β- коэффициент [ДИ 95%]	Значение <i>Р</i>	β- коэффициент [ДИ 95%]	Значение Р	β- коэффициент [ДИ 95%]	Значение Р
HLA-B27 позит	ивные пациенты					
Остроты зрения вдаль, logMAR	0.59 [0.36; 0.82]	<0.001	0.57 [0.35; 0.79]	<0.001	0.49 [0.25; 0.73]	<0.001
ВГД, мм рт ст	1.97 [-0.64; 4.59]	0.14	2.32 [-0.30; 4.94]	0.083	2.06 [-0.60; 4.71]	0.13
Клеточность влаги передней камеры, степень	-0.79 [-1.54; -0.04]	0.04	-0.87 [-1.64; -0.10]	0.026	-0.51 [-1.22; 0.19]	0.153
Помутнения влаги передней камеры, степень	-2.08 [-2.85; -1.30]	<0.001	-1.28 [-2.02; -0.54]	0.001	-1.13 [-1.86; -0.41]	0.002
Помутнения стекловидного тела, степень	0.15 [-0.36; 0.66]	0.56	0.29 [-0.21; 0.80]	0.253	0.44 [0.01; 0.86]	0.044
HLA-B27 негат	ивные пациенты					
Остроты зрения вдаль, logMAR	0.31 [0.04; 0.58]	0.024	0.39 [0.20; 0.58]	<0.001	0.51 [0.37; 0.66]	<0.001
ВГД, мм рт ст	-3.35 [-6.31; -0.39]	0.027	-3.28 [-6.26;-0.30]	0.031	-3.67 [-6.58; -0.75]	0.014
Клеточность влаги передней камеры, степень	-1.03 [-1.46; -0.60]	<0.001	-1.06 [-1.48; -0.63]	<0.001	-0.83 [-1.24; -0.42]	<0.001
Помутнения влаги передней камеры, степень	-1.71 [-2.09; -1.33]	<0.001	-1.29 [-1.60; -0.98]	<0.001	-0.96 [-1.21; -0.71]	<0.001
Помутнения стекловидного тела, степень	-0.61 [-1.23; 0.01]	0.055	-0.64 [-1.18; -0.10]	0.021	-0.54 [-1.13; 0.04]	0.07

Показатели logMAR на фоне приема симвастатина у HLA-B27 позитивных пациентов улучшилась в большей степени, чем в группе контроля, на всех сроках наблюдения (таблица 6). Статистически значимых различий по ВГД между группами не было.

У HLA-B27 негативных пациентов терапия с включением симвастатина была также ассоциирована с улучшением остроты зрения. В отличие от HLA-B27 (+) больных, у пациентов, негативных по HLA-B27 прием симвастатина уменьшал ВГД на всех визитах лечения.

Объективные показатели воспаления в передней камере глаза и в стекловидном теле.

В подгруппах HLA-B27 (+) и HLA-B27 (-) пациентов сочетанное лечение однотипно уменьшало показатели клеточности и помутнения влаги передней камеры глаза (таблица 6). Терапия с включением симвастатина была ассоциирована с увеличением степени помутнения стекловидного тела на 8 неделе у HLA-B27 (+) больных и снижением помутнения стекловидного тела на неделе 4 у HLA-B27 (-) пациентов.

Таким образом, результаты анализа чувствительности подтверждают результаты, полученные в основной группе обследованных, и показывают, что клиническая эффективность дополнения симвастатина к лечению ГКС не зависит от HLA-B27-статуса пациентов.

Сравнение содержания цитокинов слезы у больных неинфекционным увеитом и здоровых людей

В этом разделе работы будут представлены данные определения ряда цитокинов в слезной жидкости больных увеитом и условно здоровых людей. Поскольку современные статистические методы позволяют анализировать данные, содержащие не более 80% цензурированных значений, мы вынуждены были исключить данные о содержании TNFα и IFN-γ из всех дальнейших анализов.

Сравнение цитокинов слезы у больных неспецифическим увеитом и здоровых

Сравнение концентраций цитокинов слезы у пациентов с увеитом и здоровыми людьми контрольной группы представлено в таблице 7. У пациентов с увеитом наблюдалось статистически значимое 7-кратное увеличение концентрации IL-6, 2-кратное увеличение слезного IL-8 и 5-кратное увеличение IL-10 в слезной жидкости с использованием как критерия Стьюдента, так и моделей регрессии Тобита с поправкой на цензурирование данных. После коррекции по полу и возрасту оставались статистически значимыми только различия в концентрациях IL-6 и IL-10.

Таблица 7. Исходные концентрации цитокинов слезы у пациентов с увеитом по сравнению со здоровыми людьми.

Цитокины, пг/мл	Пациенты с увеитом (n = 50)	Здоровые люди (n = 30)	t ^a	Значение Ра	t ^b	Значение Р ^b	t ^c	Значение Р ^с
IL-6	114.80 (178.03)	16.52 (85.97)	3.31	0.001	4.24	< 0.001	2.58	0.01
IL-8	916.22 (1329.86)	424.34 (578.32)	2.28	0.03	2.02	0.044	0.72	0.47
IL-10	45.43 (71.53)	8.60 (27.10)	3.27	0.002	2.6	0.01	2.88	0.004

Примечание: концентрации цитокинов представлены в виде среднего значения (SD)

В следующем разделе работы мы анализировали связь содержания цитокинов

^а критерий Стьюдента

^bТобит-регрессия, учитывающая наличие цензурированных данных

^с Тобит-регрессия, учитывающая наличие цензурированных данных с коррекцией по возрасту и полу

слезной жидкости у больных увеитом с рядом клинических и демографических показателей.

Связь клинических и демографических показателей с содержанием цитокинов слезы.

Результаты анализа представлены в таблице 8. Концентрация цитокинов слезной жидкости не была связана ни с демографическими характеристиками, ни с выраженностью воспаления глаза на момент осмотра. Среди оцениваемых параметров только длительность увеита ассоциировалась с повышением содержания IL-6 и IL-8. В-коэффициенты 49 и 235 указывают на то, что за каждый год, прошедший с момента постановки диагноза увеита, концентрации IL-6 и IL-8 в слезе может повышаться в среднем на 49 пг/мл и 235 пг/мл соответственно.

Таблица 8. Факторы, ассоциированные с концентрацией цитокинов в слезной жидкости до лечения. Результаты множественной цензурированной регрессии Тобита.

	IL-6		IL-	8	IL-10	
	β- коэффици- ент	Значе- ние Р	β- коэффицие нт	Значение Р	β- коэффици- ент	Значение Р
Возраст, лет	0.79	0.73	13.68	0.39	-3.46	0.15
Пол	70.38	0.23	310.90	0.47	-59.72	0.31
Длительность увеита, лет	49.43	0.001	235.20	0.04	2.76	0.86
Анатомическая локализация:	-799.48	0.87	-383.93	0.71	-572.84	0.91
Промежуточный увеитЗадний увеит	-41.83	0.75	236.61	0.78	-14.59	0.91
ВГД, мм рт ст	1.68	0.86	-13.51	0.83	-8.19	0.43
Клеточность влаги передней камеры	91.53	0.07	-3.14	0.99	-49.80	0.37
Помутнение влаги передней камеры	-42.47	0.41	-3.71	0.99	11.45	0.83

Одним из доказательств того, что биомаркер является индикатором биологического процесса, является так называемая «чувствительность к изменению» ("sensitivity to change"), т.е. способность биомаркера изменять свои значения при изменении состояния больного. В следующем разделе работы мы анализировали чувствительность к изменению цитокинов слезной жидкости у больных неинфекционным увеитом, участвовавших в исследовании.

Влияние терапии увеита на содержание цитокинов слезной жидкости, связь изменений концентрации цитокинов с изменениями клинических параметров

Лечение увеита не привело к значительным изменениям концентраций IL-6, IL-8 и IL-10 в слезной жидкости. После стратификации по применению симвастатина в

контрольной группе пациентов наблюдалось значительное снижение уровня IL-6 (таблица 9).

Таблица 9. Изменение концентрации цитокинов слезы до и после лечения с включением симвастатина

Обе группы, n = 50							
Цитокины, пг/мл	До лечения	После лечения	Значение Р				
IL-6	115.42 (177.63)	186.60 (802.86)	0.54				
IL-8	916.22 (1329.86)	876.45 (1139.62)	0.88				
IL-10	59.45 (66.78)	52.53 (97.81)	0.68				
	Контрольная группа, n = 25						
	До лечения	ния После лечения					
IL-6	150.71 (227.84)	42.74 (44.77)	0.03				
IL-8	1229.43 (1777.26)	827.80 (879.33)	0.33				
IL-10	42.20 (44.99)	49.03 (93.22)	0.74				
	Симвастатин+стандартн	ая терапия n = 25					
	До лечения	После лечения	Значение Р				
IL-6	80.13 (99.57)	330.47 (1127.34) 0.					
IL-8	603.01 (497.74)	925.11 (1368.74)	0.3				
IL-10	76.71 (80.37)	56.03 (104.00)	0.44				

Примечание: концентрации цитокинов представлены в виде среднего значения (SD).

Далее нами оценивалась корреляция между изменениями в концентрации исследуемых цитокинов слезы и изменениями в клинических параметрах. Ассоциаций изменений цитокинов и изменений выраженности внутриглазного воспаления, остроты зрения и ВГД выявлено не было.

Результаты этого раздела свидетельствуют о том, что изучаемые цитокины слезы не обладают достаточной чувствительностью к изменению.

Еще одной характеристикой биомаркера является способность предсказывать ответ на лечение. В следующем разделе работы изучались различия в изменениях цитокинового профиля у больных неинфекционным увеитом, ответивших и не ответивших на терапию.

Цитокины слезы как предикторы ответа на терапию

Различия в исходных уровнях цитокинов слезы между ответившими и не ответившими на лечение представлены в таблице 10. Ответившие на лечение пациенты на 4-й и 8-й неделях имели в 4 и 9 раз более высокие концентрации IL-10 в образцах слезы до начала лечения, соответственно. Выявленные ассоциации сохранялись после коррекции регрессионных моделей по цензурированным данным и ряду клинических показателей. Содержание других изучаемых цитокинов у ответчиков и неответчиков не отличалось.

Таблица 10. Связь между исходными концентрациями цитокинов слезы и ответом на лечение.

Цитокины, пг/мл	Исходная концентрация цитокинов слезы	t ^a	Значение Ра	t ^b	Значение Р ^b	t ^c	Значение Р ^с
4 неделя							

	Не ответившие на лечение (n= 23)	Ответившие на лечение (n=27)						
IL-6	102.67 (176.57)	125.13 (181.96)	0.44	0.66	0.78	0.43	1.12	0.26
IL-8	1016.05 (1416.08)	831.18 (1272.76)	0.48	0.63	0.49	0,63	0.39	0.7
IL-10	17.80 (42.05)	68.96 (83.04)	2.8	0.01	2.56	0.009	2.55	0.01
	8 недел	Я						
	Не ответившие на лечение (n= 15)	Ответившие на лечение (n=35)						
IL-6	125.55 (210.44)	110.19 (165.43)	0.25	0.783	0.005	0.99	1.15	0.25
IL-8	1186.38 (1661.34)	800.44 (1168.88)	0.81	0.352	0.94	0.35	0.33	0.74
IL-10	6.38 (24.72)	62.16 (78.49)	3.8	0.01	2.67	0.008	2.4	0.017

Примечание: концентрации цитокинов представлены в виде среднего значения (SD) а критерий Стьюдента

ьТобит-регрессия, учитывающая наличие цензурированных данных

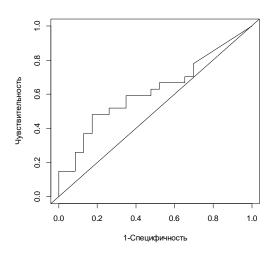
с Тобит-регрессия, учитывающая наличие цензурированных данных с коррекцией по возрасту, полу, клеточности и помутнения влаги передней камеры

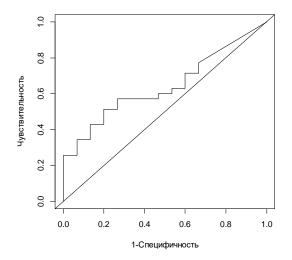
Таким образом, IL-10 слезы можно рассматривать как потенциальный биомаркер ответа на лечение при неинфекционном увеите.

ROC-анализ содержания IL-10 в слезной жидкости и вероятности ответа на тераиию неинфекционного увеита

Результаты ROC-анализа представлены в таблице 11 и проиллюстрированы на рисунке 2.

Из таблиц и рисунков видно, что измерение IL-10 слезной жидкости при выбранных оптимальных точках разделения обладало низкой чувствительностью и специфичностью, а площадь под ROC кривой была ниже 0,7 как на 4, так и на 8 неделе терапии. Показатель площади под кривой 0.5 свидетельствует об отутствии предсказательной способности теста, площадь под кривой 0.7-0.8 считается допустимой, 0.8-0.9 – указывает на отличные характеристики теста (Mandrekar 2010). Таким образом, содержание IL-10 слезы обладает низкой информативностью в отношении предсказания ответа на терапию неинфекционного увеита.


Таблица 11. ROC-характеристики IL-10 слезной жидкости как предиктора


развития ответа на лечение на 3 и 4 визитах.

pusbillin (JIBCIU IIU VIC IC	mic me o m i biismidat		
	Площадь	Оптимальная точка	Чувствительность,	Специфичность,
	под кривой	разделения, пг/мл	%	%
	(area under			
	the curve,			
	AUC)			

Неделя 4	0.62	46	59.2	65.2
Неделя 8	0.64	46	57.1	73.3

Рисунок 2. ROC-кривая содержания IL-10 слезы и развития ответа на терапию на 4 и 8 неделях лечения.

В целом, полученные данные свидетельствуют о том, что цитокины слезы не являются информативными биомаркерами воспаленеия при инфекционном увеите, т.к. их содержание не связано с параметрами выраженности внутриглазного воспаления и не изменяется после эффективной терапии симвастатином в сочетании с ГКС. Содержание IL-10 не обладает достаточной чувствительностью и специфичностью для предсказания ответа на лечения. Таким образом, промежуточный анализ работы показал, что IL-6, IL - 8, IL-10 в слезе не удовлетворяют критериям биомаркеров воспаления и ответа на лечение при увеите.

Цитокины сыворотки как биомаркеры неинфекционного увеита (субисследование) Далее оценивалось влияние приема симвастатина больными неинфекционным увеитом в течение 8 недель на содержание цитокинов сыворотки крови. Было рандомизировано 30 пациентов, проводилась оценка некоторых параметров клинической эффективности и измерение концентрации циркулирующих IL-6, IL-10, IL-1β, IL-18 и TNFα.

Сравниваемые группы были сбалансированы по основным демографическим и клиническим характеристикам.

В группе симвастатина и группе контроля до и после лечения выявлено статистически значимое улучшение показателей воспаления передней камеры глаза и остроты зрения (таблица 12). Сравнения между группами по клиническим изменениям не проводилось.

Таблица 12. Изменение клинических параметров в динамике лечения в группах сравнения.

Симвастатин+стандартная терапия						
	n=15	n=15				
ВГД, мм рт ст	18.47 (1.73)	18.73 (1.83)	0.685			
Клеточность влаги передней камеры	2.67 (0.82)	0.03 (0.13)	< 0.001			
Помутнение влаги передней камеры	2.07 (1.03)	0.00 (0.00)	< 0.001			
Острота зрения по logMAR	0.79 (0.79)	0.05 (0.08)	0.001			

Контрольная группа						
	n=15	n=15				
ВГД, мм рт ст	17.80 (0.94)	17.40 (1.18)	0.314			
Клеточность влаги передней камеры	2.47 (0.83)	0.20 (0.37)	< 0.001			
Помутнение влаги передней камеры	2.60 (0.74)	0.00 (0.00)	< 0.001			
Острота зрения, logMAR	0.83 (0.50)	0.17 (0.14)	< 0.001			

Примечание: Значения даны как среднее и стандартное отклонение (SD)

До лечения процент цензурованных значений для IL-1 β в сыворотке составил 86,67% и для IL-10 - 83.3%, поэтому эти цитокины были исключены из дальнейшего анализа данных.

Далее изучалась возможная ассоциация клинических и демографических показателей с содержанием цитокинов сыворотки крови. Концентрация цитокинов не была связана с выраженностью воспаления глаза. Независимым предиктором содержания циркулирующего TNFα был возраст пациентов. Также выявлялась ассоциация повышения внутриглазного давления с увеличением концентрации IL-6 сыворотки.

Далее нами оценивалось влияние терапии больных неинфекционным увеитом в течение 8 недель на концентрацию цитокинов в сыворотке крови.

Лечение увеита не приводило к изменениям концентраций изучаемых цитокинов в сыворотке крови. В анализе, стратифицированном по включению симвастатина, также не было выявлено изменений до и после лечения.

Далее нами оценивалась корреляция между изменениями в концентрации исследуемых цитокинов сыворотки и изменениями в клинических параметрах в динамике лечения. Было выявлено, что увеличение концентрации IL-6 положительно ассоциируется с изменением помутнения стекловидного тела.

Таким образом, результаты субисследования показали, что IL-6, IL-18, TNFα сыворотки периферической крови, также как цитокины слезной жидкости больных неинфекционным увеитом не соответствуют критериям биомаркеров. Они не коррелируют с основными клиническими характеристиками болезни, в первую очередь показателями воспаления, не чувствительны к изменениям, обусловленным сочетанной терапией симвастатином и традиционной терапией в опытной группе и ГКС в контрольной.

Заключение

АИУ является актуальной проблемой здравоохранения, прямые и непрямые расходы на лечение которого сопоставимы с расходами на терапию такого распространенного заболеваний, как сахарный диабет 2 типа. Современная терапия АИУ неудовлетворительна из-за разнообразных побочных эффектов ГКС и синтетических болезнь-модифицирующих препаратов, повышения риска инфекций при использовании генноинженерных препаратов, их высокой стоимости. Другой серьезной проблемой в лечении АИУ является отсутствие информативных биомаркеров активности болезни и ответа на терапию. Ингибиторы 3-гидрокси 3-метил коэнзим А редуктазы (статины), зарегистрированные для лечения дислипидемии и снижения риска сердечно-сосудистых заболеваний, обладают иммуномодулирующими и противовоспалительными свойствами, которые привели к успешным попыткам использования этой группы препаратов при аутоиммунных заболеваниях, включая рассеянный склероз, ревматоидный артрит, псориаз. В проведенном нами рандомизированном исследовании включение симвастатина в стандартную терапию увеита ГКС приводило в конце двухмесячного

наблюдения к повышению эффективности лечения уменьшению воспаления в передней камере глаза, уменьшению потребности в ГКС и улучшению остроты зрения. Причем частота ответа на сочетанное лечение более чем в 2 раза превышала частоту в группе контроля. Продемонстрированная клиническая эффективность включения симвастатина при АИУ сопоставима с эффективностью метотрексата и некоторых генно-инженерных препаратов. Нами зарегистрировано повышение содержания IL-6 и IL-10 у больных с АУИ по сравнению со здоровыми людьми, выявлена ассоциация уровня IL-6 и IL-8 с продолжительностью АИУ, но не с активностью болезни. Полученные данные могут быть объяснены участием IL-6 и IL-8 в хронизации воспаления при АУИ. Повышенный уровень IL-10 может свидетельствовать об активации механизмов ауторегуляции иммунного ответа и воспаления при увеите. В работе показано отсутствие изменений в содержании сывороточных цитокинов при лечении, отсутствие различий в уровне циркулирующих цитокинов между ответившими и не ответившими на лечение. В целом, полученные результаты не позволяют считать изученные цитокины слезы и сыворотки потенциальными биомаркерами активности воспаления и ответа на комбинированное лечение у больных неинфекционным увеитом.

Выводы

- 1. Добавление симвастатина к стандартной терапии аутоиммуного увеита повышает в конце 8 недели число пациентов, ответивших на лечение, до 96%, уменьшает выраженность воспаления в передней камере глаза, повышает остроту зрения и не вызывает серьезных нежелательных событий, что свидетельствует об эффективности и безопасности комбинированной терапии и ее премуществе перед монотерапией ГКС.
- 2. У больных с неспецифическим увеитом в слезной жидкости по сравнению со здоровыми людьми регистрируется пятикратное повышение концентрации IL-10, семикратное IL-6. TNFα и IFN-γ не определяются, содержание IL-8 не изменено. Эти данные указывают на потенциальную возможность использования цитокинов слезы как биомаркеров внутриглазного воспаления и ответа на лечение.
- 3. Содержание IL-6, IL-8, IL-10 в слезной жидкости больных неспецифическим увеитом не связано с выраженностью воспаления в передней камере глаза и демографическими показателями, концентрации IL-6 и IL-8 сопряжены с продолжительностью болезни. Это говорит о связи изучаемых цитокинов с длительностью внутриглазного воспаления.
- 4. В динамике лечения больных увеитом изменения содержания цитокинов в слезе не коррелируют с изменениями клинических параметров воспаления, информативность потенциального предиктора ответа на лечение IL-10 слезы оказалась низкой по результатам ROC-анализа; это указывает на то, что изучаемые цитокины слезной жидкости не являются мишенями для реализации эффекта симвастатина при увеите.
- 5. Содержание циркулирующих в периферической крови IL-6, IL-18 и TNF-α у больных неинфекционным увеитом не связано с выраженностью воспаления, не изменяется при лечении и не является предиктором ответа на терапию, что свидетельствует о преимущественно локальном характере воспаления при неинфекционном увеите.

Список основных работ, опубликованных по теме диссертации:

- 1. **Biryukova A.A.**, Shirinsky I.V, Shirinsky V.S. Efficacyand Safety of Simvastatinin Uveitis Associated with HLAB27 and/or Rheumatic Diseases: A Randomized, Open-Label Study Annals of the Rheumatic Diseases 2015;74:497.
- 2. Shirinsky I.V., **Biryukova A.A.**, Shirinsky V.S. Simvastatin as an Adjunct to Conventional Therapy of Non-infectious Uveitis: A Randomized, Open-Label Pilot Study. Curr Eye Res. 2017 Dec;42(12):1713-1718.
- 3. **Бирюкова А.А.**, Ширинский И.В., Ширинский В.С. Опыт применения статинов при неинфекционном увеите. Тезисы XXII Международной медико-биологической конференции молодых исследователей. СПб.: Изд-во СПбГУ, 2019. 243 с.
- 4. **Бирюкова А.А.**, Ширинский И.В. Использование статинов для лечения неинфекционного увеита., Российский иммунологический журнал, 2019, том 13(22), №2-3
- 5. **Biryukova A.A.**, Shirinsky I.V., Shirinsky V.S. Efficacy and safety of simvastatin in uveitis associated with rheumatic diseases: a randomized, open-label study. Annals of the 2nd Global Ophthalmology Summit 2019.
- 6. Shirinsky I.V., **Biryukova A.A.**, Kalinovskaya N.Y., Shirinsky VS. Tear cytokines as potential biomarkers in non-infectious uveitis: post hoc analysis of a randomised clinical trial. Graefes Arch Clin Exp Ophthalmol. 2020 Aug;258(8):1813-1819.